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Abstract

The accuracy of the integral of the Arrhenius equation, as determined from the 1st to the 4th degree
rational approximation proposed by Senum and Yang, has been calculated. The precision of the 5th

to 8th rational approximations, here proposed for the first time, has also been analyzed. It has been
concluded that the accuracy increases by increasing the order of the rational approximation. It has
been shown that these approximations to the Arrhenius equation integral would allow an accuracy
better than 10–8% in the E/RT range generally observed for solid state reactions. Moreover, it has
been demonstrated that errors closed to 10–2% can be obtained even for E/RT=1, provided that high
enough degrees of rational approximation have been used. Thus, it would be reasonable to assume
that high degree rational approximations for the Arrhenius integral could be used for the kinetic
analysis of processes, like adsorption or desorption of gases on solid surfaces, which can take place
at low temperatures with very low values of E/RT.
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Introduction

The integration of the Arrhenius equation is usually required either for performing the ki-
netic analysis of experimental data obtained under non-isothermal conditions, or for sim-
ulating α–, or dα/dt–T plots. A number of different approaches have been proposed in the
literature during the second half of the 20th century as can be found in excellent reviews of
Šesták [1] and Flynn [2]. It is worth pointing out that the approximations proposed by
Senum and Yang [3] have become very popular since they were proposed in 1977, be-
cause of their assumed high accuracy. Nowadays, they are still used in a large number of
papers [4–16]. These authors have approximated the integral of the Arrhenius equation
using rational approximations from 1st to 4th degrees. It is necessary to point out that some
expressions similar to those outlined by Senum and Yang were formerly developed by
other authors. Thus, the empirical approximation to the Arrhenius integral proposed by
Gorbachev [17] is identical to the first rational approximation of Senum and Yang. Zsakó
[18] and Balarin [19] also proposed empirical Arrhenius integral equations similar to
those developed from the rational approximation. Senum and Yang concluded that
higher accuracy is achieved by using the higher order rational approximations.
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However, Urbanovici et al. in a very recent paper have calculated [20], the accu-
racy of these expressions. They have concluded that the precision of the second- and
third-order rational approaches is better than that of the fourth-order approximation.
This conclusion is in disagreement with both Senum and Yang’s statement [3] and
the results recently reported by Flynn [2]. Taking into account the generalized use of
the Senum and Yang equations for the Arrhenius integral, it seems to be of great in-
terest to check the accuracy of these approximations. The scope of this paper is to re
analyze the accuracy of the 2nd to 4th rational approximations proposed by Senum and
Yang. Moreover, the precision of the 5th to 8th rational approximations, here proposed
for the first time, has been calculated as well.

Results

The general equation describing the rate of a solid state reaction, recorded under a
constant heating rate β=dT/dt , can be expressed in the form:
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where α is the reacted fraction at the absolute temperature T; A is the Arrhenius pre-
exponential factor, E is the activation energy and f(α) a function depending on the ki-
netic model obeyed by the reaction.

Equation (1), after being integrated for a linear heating rate experiment with a
constant heating rate of β, becomes:

g
f

A E

RT
( )

( )
α α

α β

α

= = 

 


∫ ∫

d
exp – d

T

0 0

T (2)

The integral of the right hand side of Eq. (2), named the Arrhenius integral, can
be expressed in the form:
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where x=E/RT.
The p(x) function cannot be expressed in a closed form and must be calculated

by using different approximations [1, 2]. The rational approach proposed by Senum
and Yang [3] advocates the use of a certain number of terms in the following contin-
ued fraction approximation, previously proposed by Patterson [21, 22]:
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Urbanovici et al. have estimated [20] the accuracy of the 2nd to 4th degree rational
approximation described by Senum and Yang [3] and they concluded that, for a par-
ticular value of x, the accuracy reaches a maximum for the third-order rational ap-
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Table 1 Expressions for one to eight degree rational approximations for Arrhenius integral. The 2nd and 4th degree approximations were pro-
posed by Senum and Yang [3]

Degree p(x) Equation

1a exp( )− ⋅
+

x

x x

1

2
(5)

2
exp( )− ⋅ +

+ +
x

x

x

x x

4

6 62 (6)

3
exp( )− ⋅ + +

+ + +
x

x

x x

x x x

2

3 2

10 18

12 368 24
(7)

4b exp( )− ⋅ + + +
+ + + +

x

x

x x x

x x x x

3 2

4 3 2

18 86 96

20 120 240 120
(8)

5
exp( )− ⋅ + + + +

+ + +
x

x

x x x x

x x x x

4 3 2

5 4 3

28 246 756 600

30 300 1200 2 1800 720+ +x
(9)

6
exp( )− ⋅ + + + + +

+ +
x

x

x x x x x

x x

5 4 3 2

6 5

40 552 3168 7092 4320

42 630 4200 12600 15120 50404 3 2x x x x+ + + +
(10)

7
exp( )− ⋅ + + + + + +x

x

x x x x x x6 5 4 3 254 1070 9720 41112 71856 35280

56 1176 11760 58800 141120 141120 47 6 5 4 3 2x x x x x x x+ + + + + + + 0320
(11)

8
exp( )− ⋅ + + + + + +x

x

x x x x x x7 6 5 4 3 270 1886 24920 170136 577584 844560 357120

72 2024 28560 216720 88038 7 6 5 4

x

x x x x x

+
+ + + + + 20 1794240 1572480 4032003 2x x x+ + +

(12)

a This expression was proposed by Gorbachev [17]
b Reference [3] has an error in the first power x term of the numerator of the 4th degree approximation, as previously reported by Flynn [2]. It should be
written 86x instead of 88x
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Table 2 Percentage errors of the p(x) functions for the 2nd to 8th rational approximations

x
Degree

1 2 3 4 5 6 7 8

1 –17.421 –4.716 –1.584 –6.082⋅10–1 –2.567⋅10–1 –1.163⋅10–1 –5.568⋅10–2 –3.334⋅10–2

2 –9.859 –1.664 –3.703⋅10–1 –9.833⋅10–2 –2.961⋅10–2 –9.813⋅10–3 –3.508⋅10–3 –1.732⋅10–3

5 –3.403 –2.354⋅10–1 –2.393⋅10–2 –3.132⋅10–3 –4.927⋅10–4 –8.924⋅10–5 –1.810⋅10–5 –6.369⋅10–6

10 –1.225 –3.474⋅10–2 –1.583⋅10–3 –9.931⋅10–5 –7.886⋅10–6 –7.524⋅10–7 –8.325⋅10–8 –2.178⋅10–8

20 –3.825⋅10–1 –3.756⋅10–3 –6.409⋅10–5 –1.604⋅10–6 –5.354⋅10–8 –2.244⋅10–9 –1.137⋅10–10 –2.294⋅10–11

30 –1.847⋅10–1 –9.154⋅10–4 –8.179⋅10–6 –1.106⋅10–7 –2.050⋅10–9 –4.916⋅10–11 –1.768⋅10–12 –5.745⋅10–13

40 –1.085⋅10–1 –3.239⋅10–4 –1.781⋅10–6 –1.510⋅10–8 –1.789⋅10–10 –3.226⋅10–12 –5.376⋅10–13 <10–13

50 –7.137⋅10–2 –1.422⋅10–4 –5.296⋅10–7 –3.080⋅10–9 –2.579⋅10–11 –7.941⋅10–13 <10–13

75 –3.291⋅10–2 –3.092⋅10–5 –5.540⋅10–8 –1.585⋅10–10 –7.353⋅10–13 <10–13

100 –1.886⋅10–2 –1.028⋅10–5 –1.080⋅10–8 –1.847⋅10–11 <10–13



proximation. Thus, they consider that the use of approximations with order higher
than three is not justified. However, Flynn [2] has pointed out that there is an error in
the first power of the x term of the numerator of the 4th degree rational approximation
proposed by Senum and Yang. According to Flynn, the correct value of this term is
86x, instead of 88x as reported by Senum and Yang [3]. The equation used by Urba-
novici et al. [20] for determining the accuracy of the fourth-order approximation was
that proposed by Senum and Yang.

The expressions for the p(x) function calculated by developing Eq. (4) by means
of the symbolic calculation pad included in the MathCad software [23], after consid-
ering from the second to the eighth degree rational approximation, are shown in Ta-
ble 1. Equation (7) obtained for the 4th rational approximation is identical to the one
reported by Flynn [2]. Thus, the results reported here corroborate Flynn’s finding
concerning the error in the coefficient of the first power of the x term of the numerator
of the 4th degree approximation given by Senum and Yang [3]. Therefore, the accu-
racy values that Urbanovici et al. have calculated for this approximation, using the
equation previously reported by Senum and Yang, could be wrong.

The Arrhenius integral has been determined as a function of the x parameter by
numerical integration with the highest precision (10–13%) allowed by MathCad soft-
ware [23] used. The values obtained have been compared with those calculated from
Eqs (5) to (12), included in Table 1, and the corresponding relative errors have been
included in Table 2.

Table 3 Expressions for different rational approximations for Arrhenius integral proposed in the
literature

Author p(x) Equation

Doyle [24], Coats–Redfern [25]
exp( )− ⋅x

x x

1
(13)

Coats–Redfern [25]
exp( )− ⋅ −x

x

x

x

2
(14)

Balarin [19]
exp( )− ⋅ − + −x

x

x x x

x

3 2

4

2 6 20
(15)

Zsakó [18]
exp( )− ⋅ + +

+ + + −
x

x

x x x

x x x x

3 2

4 3 2

4 84

2 76 152 32
(16)

For the sake of completeness it has been considered of interest to analyze the ac-
curacy of the p(x) functions whose π(x) expressions (Eq. 4) are given by a ratio of two
algebraic polynomials like the rational approximations. These functions, as reviewed
by Šesták [1], are summarized in Table 3. The percentage errors, percentage calcu-
lated following the same procedure previously described for determining the relative
error of Eqs (5) to (12) are shown in Table 4. The results obtained are in good agree-
ment with those previously determined by Šesták [1] in the range 5≤x≤40. The accu-
racy of these Arrhenius integral approximations is poorer than the corresponding
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ones for the rational approach with an order higher than two as a comparison of the
results included in Tables 2 and 4 shows.

Table 4 Percentage error of the p(x) included in Table 3

x

Approximation

Doyle [24] and
Coats–Redfern [25]

Coats–Redfern [25] Balarin [19] Zsakó [18]

1 147.737 –347.737 –3816.066 2.906

2 80.282 –100. –280.282 1.568·10–1

5 35.236 –18.86 –8.039 2.002·10–1

10 18.530 –5.176 –4.346·10–1 –1.150·10–1

20 9.579 –1.379 –8.964·10–3 –1.849·10–1

30 6.470 –6.284·10–1 –2.570·10–3 –1.231·10–1

40 4.886 –3.583·10–1 –2.268·10–3 –8.232·10–2

50 3.926 –2.313·10–1 –1.541·10–3 –5.795·10–2

75 2.633 –1.040·10–1 –6.124·10–4 –2.897·10–2

100 1.981 –5.886·10–2 –2.924·10–4 –1.721·10–2

Conclusions

The above results point out that the accuracy of the integration of the Arrhenius equa-
tion increases by increasing the degree of the rational approximation. These results
are in agreement with Senum and Yang’s [3] statement and Flynn’s previous calcula-
tions [2], while they are in disagreement with the conclusion of Urbanovici et al. [20].
On the other hand, it must be pointed out that, in spite of the fact that values of
x=E/RT<10 are generally meaningless in solid state reactions we have extended the
calculations down to x=1. The results obtained demonstrate that errors close to 10–2%
can be reached for values of x=1 provided that high enough rational approximation
degrees have been used. This finding suggests that the use of high-degree rational ap-
proximations for determining the p(x) function would be useful for performing the ki-
netic analysis of adsorption and desorption of gases on solid surfaces. These pro-
cesses frequently take place below room temperature and very low values of E/RT are
not unusual. However, the choice of the proper approximation for the Arrhenius inte-
gral depends on the value of E/RT and the desired accuracy, which must be consistent
with the experimental error, rather than on the specific type of reaction.
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